Comments on the Draft NTP Monograph on Health Effects of Low-level Lead Submitted to NTP, NIEHS, Research Triangle Park, NC by Kathleen Burns, Ph.D., Director, Sciencecorps 168 Burlington St., Lexington, MA kmb@sciencecorps.org Scientists at the NTP and other institutions who reviewed the extensive toxicological and epidemiological data on lead are to be commended for their efforts and careful evaluation of the scientific evidence. Overall, the conclusions are well-supported by extensive peer-reviewed scientific literature. It is a benefit to the public health community that the authors addressed complex emerging lead toxicity issues (e.g., immunonotoxicity, neurodegenerative diseases). My comments focus on the lack of discussion of genotoxicity, which is relevant to infertility, developmental disorders, pregnancy loss, and related reproductive/developmental health. The scientific evidence on genotoxicity is extensive, benefiting greatly from assays available since the 1990s. In addition, a detailed list of human genotoxicity studies is available in the 2003 NTP "Report on Carcinogens Background Document for Lead and Lead Compounds", (http://ntp.niehs.nih.gov/ntp/newhomeroc/roc11/Lead-Public.pdf). (The appendix to this comment contains the table of human studies from this report). Although the human studies involved blood lead levels above the targeted 10 ug/dL, genotoxicity is generally assumed to have no assumed threshold for damage (although there may be an observational threshold due to repair/deletion mechanisms). In pragmatic terms, the relevance of assays and higher exposure human studies is translated into policy in the US federal drinking water standards. These incorporate an assumption of no safe level of exposure to a genotoxic carcinogen (i.e., the Maximum Contaminant Level Goal is zero). This is a well-established concept and suggests that both lab assay and human genotoxicity data could be mentioned, even within the low exposure scope of the report. It would be important and valuable to many readers if you provided a brief discussion of the role genotoxicity can play in reproductive and developmental toxicity. The evidence regarding sperm abnormalities is clear, with chromosome breakage reported in the single genotoxicity study cited in the report (Al Hakkak et al (1986). In addition, few scientists would argue that mutations do not pose a developmental hazard. While repair and other mechanisms may eliminate most mutations, the dynamic remains relevant. An understanding of the fact that lead is genotoxicity is as essential in this document as it was in the 2003 NTP cancer document. I am not recommending a full analysis of the genotoxicity data, since the NTP 2003 document provides clear and substantial evidence, but do recommend that this topic be discussed briefly, with reference to the 2003 document. Thank you for consideration of this request. Appendix A. This table is from the NTP 2003 Report on Carcinogens Background Document for Lead and Lead Compounds, US DHHS, Research Triangle Park, NC. Citations in this table can be located at: http://ntp.niehs.nih.gov/ntp/newhomeroc/roc11/Lead-Public.pdf | End point | Results | Blood lead
level ^a
(µg/dL) | Exposure (country) | Reference | |---|---------|---|--|---| | Chromosomal
aberrations in peripheral
blood lymphocytes | + | 37.7 | lead-exposed workers | Schwanitz et al.
1970 ^{b,c} Schwanitz et
al. 1975 ^{b,c} | | Chromosomal
aberrations in peripheral
blood lymphocytes | + | 38 to 64 | storage-battery plant workers
(Italy) | Forni et al. 1976 ^b | | Chromosomal
aberrations in peripheral
blood lymphocytes | + | > 50 | lead-exposed smelter workers
(Sweden) | Nordenson et al. 1978 ^b | | Chromosomal
aberrations in peripheral
blood lymphocytes | + | 38 to 96 | storage-battery plant workers
(Iraq) | Al-Hakkak et al. 1986 ^b | | Chromosomal
aberrations in peripheral
blood lymphocytes | + | 22 to 48 | storage-battery plant workers
(China) | Huang et al. 1988 ^{b,d} | | Chromosomal
aberrations (also
significantly dependent
on radiation dose) in
peripheral blood
lymphocytes | + | 27.9 | lead and zinc mine workers,
also exposed to metals and
radon
(Slovenia) | Bilban 1998 | | Chromosomal
aberrations in peripheral
blood lymphocytes | +/_ | 40 to > 120 | shipyard workers
(Scotland) | O'Riordan and Evans
1974 ^b | | Chromosomal
aberrations in peripheral
blood lymphocytes | - | average 48.7 | lead smelter workers
(Finland) | Maki-Paakkanen <i>et al.</i>
1981 ^b | | Chromosomal
aberrations in peripheral
blood lymphocytes | - | > 30 | children living near lead plant
(Germany) | Bauchinger <i>et al.</i>
1977 ^b | | Chromosomal aberrations | - | NA | lead manufacturing industry
(The Netherlands) | Schmid et al. 1972 ^{b,c} | | Chromosomal
aberrations in peripheral
blood lymphocytes | _ | 40 | volunteers who ingested lead
acetate (49 days)
(The Netherlands) | Bijlsma and de France
1976 ^{e,f} | | SCE in peripheral blood
lymphocytes | + | 22 to 48 | storage-battery plant workers
(China) | Huang et al. 1988 ^{b,d} | | SCE in peripheral blood
lymphocytes (exposure-
response with blood
lead levels) | + | 27.9 | lead and zinc mine workers,
also exposed to metals and
radon
(Slovenia) | Bilban 1998 | | End point | Results | Blood lead
level ^a
(µg/dL) | Exposure (country) | Reference | |---|------------------|--|--|---| | SCE in peripheral blood | + | 13.81 | lead and zinc powder factory | Donmez et al. 1998 | | lymphocytes | ' | 15.61 | (Turkey) | Dominez et al. 1996 | | SCE in peripheral blood
lymphocytes | + | 32.5 | battery manufacturer
(Taiwan) | Wu et al. 2002 | | High-SCE-frequency cells | + | | (| | | SCE in peripheral blood
lymphocytes | +/_ ^g | average 48.7 | lead smelter workers
(Finland) | Maki-Paakkanen <i>et al.</i>
1981 ^b | | SCE in peripheral blood
lymphocytes | +/_h | 29 to 75 | storage-battery plant workers
(Denmark) | Grandjean et al. 1983 ^b | | SCE in peripheral blood
lymphocytes | - | 29 to 63 | children living near lead
smelter
(Italy) | Dalpra et al. 1983 ^b | | SCE in peripheral blood
lymphocytes | _ | NA | battery factory workers
(Mexico) | Leal-Garza et al.
1986 ^b | | SCE in peripheral blood
lymphocytes | - | NR | printing-press workers
(India) | Rajah and Ahuja 1995 | | Micronuclei in
peripheral blood
leukocytes | + | 67.55 | lead smelter workers
(Bulgaria) | Vaglenov et al. 1997 | | Micronuclei in
peripheral blood
leukocytes | + | 27.9 | lead and zinc mine workers,
workers also exposed to metals
and radon
(Slovenia) | Bilban 1998 | | Micronuclei in
peripheral blood
leukocytes | + | 60.92 | starter-battery plant
(Slovenia) | Vaglenov et al. 1998 | | Micronuclei in blood
lymphocytes | + | 40 | metal-powder producing
workers (lead, zinc, cadmium)
(Turkey) | Hamurcu et al. 2001 | | DNA-protein crosslinks
in peripheral blood
lymphocytes | + | 32.5 | battery manufacture workers
(Taiwan) | Wu et al. 2002 | | DNA damage (comet
assay) in peripheral
blood lymphocytes
significant relationship
at blood levels > 27
µg/dL | + | four groups:
< 13
13 to 27
27 to 37
> 37 | lead smelter workers
(secondary)
(China) | Ye et al. 1999 | | End point | Results | Blood lead
level ^a
(µg/dL) | Exposure (country) | Reference | |--|---------|---|--|--| | DNA damage (comet
assay) in peripheral
blood lymphocytes | | 41 to >120 | battery factory workers
(Colombia) | Restrepo et al. 2000 | | basal level
sensitivity to X rays | + + | | | | | DNA damage (comet assay) | + | 39 | battery factory workers
(Italy) | Fracasso et al. 2002 | | DNA repair capacity
(comet assay) after
exposure to X rays in
peripheral blood
lymphocytes | - | 41 to > 120 | battery factory workers
(Colombia) | Restrepo et al. 2000 | | Higher mitotic activity in peripheral blood lymphocytes | + | 40 | volunteers who ingested lead
acetate (49 days)
(The Netherlands) | Bijlsma and de France
1976 ^{b,e} | | Decrease in mitotic index in peripheral blood lymphocytes | + | NR | printing press workers
(India) | Rajah and Ahuja 1995 | | Increased mitotic activity | + | NA | lead-exposed workers
(Germany) | Schwanitz et al.
1970 ^{b,c} | | Effects on cell division | + | NA | (not available) | Sarto et al. 1978 ^{b,c} | ^aNA = not available; NR = not reported. bNot reviewed in text; source: ATSDR 1999. Foreign-language publication, not reviewed here; results are those reported by ATSDR 1999. ^dIncorrectly listed in ATSDR (1999) as environmentally exposed children and as reporting negative results for SCE; no papers by Huang and genotoxicity in environmentally exposed children were found. ^{*}Incorrectly listed in ATSDR (1999) as Bulsma. ^fStudy was reviewed in ATSDR (1999) (see mitotic index), but chromosomal aberrations were not reported. SCE frequency was higher in lead-exposed smokers than in non-exposed smokers, but not higher in lead-exposed nonsmokers than control non-smokers. hATSDR (1999) also reported a slight positive correlation with duration but not level of exposure.